- 1. use two AD8302's
 - a. apply identical "reference signal" to each AD8302 INPB
 - b. apply "unknown signal" to INPA of one of the AD8302's
 - c. apply 90°-shifted "unknown signal" to INPA of other AD8302

2. Resulting VPHS outputs are shown below

3. Determine phase angle, Θ , through following decision tree:

а

- a. If VPHS_A \ge (0.75*VREF) and (VPHS_B \le VREF/2) then $\Theta = ((VPHS_B 0.9)/(-10^{-2}))$
- b. If VPHS_B < (0.25*VREF) then $\Theta = ((VPHS_A 0.9)/-10^{-2})+90$
- c. If VPHS_A $\leq (0.25*VREF)$ then $\Theta = ((VPHS_B 0.9)/10^{-2})+180$
- d. If VPHS_B > (0.75*VREF) then $\Theta = ((VPHS_A 0.9)/10^{-2})+270$
- e. If VPHS_A \ge (0.75*VREF) and (VPHS_B \ge VREF/2) then Θ = ((VPHS_B 0.9)/-10⁻²)+360

(Note that there are "greater than" (>), "greater than or equal to" (\geq), "less than" (<) and "less than or equal to" (\leq) inequalities in the decision tree above).

This algorithm could be implemented by digitizing $VPHS_A$ and $VPHS_B$ and using an IF– THEN-ELSE or similar structure in software, then either use this digital value directly or use this digital value to produce an analog output with a DAC.

This algorithm uses only the "sweet spot" regions of each VPHS output, i.e., those portions of the curves that are centered around 900 mV.

- 4. Analog output voltage could be constructed from VPHS_A and VPHS_B according to following decision tree:
 - a. If $\Theta \le 45^{\circ}$ then $V_{OUT} = VPHS_B + 2.7 V$
 - b. If $(\Theta > 45^{\circ})$ and $(\Theta \le 135^{\circ})$ then $V_{OUT} = VPHS_A + 1.8 V$
 - c. If $(\Theta > 135^{\circ})$ and $(\Theta \le 225^{\circ})$ then $V_{OUT} = 2.7V VPHS_B$
 - d. If $(\Theta > 225^{\circ})$ and $(\Theta \le 315^{\circ})$ then $V_{OUT} = 1.8 \text{ V} \text{VPHS}_{A}$
 - e. If $\Theta > 315^{\circ}$ then $V_{OUT} = VPHS_B 0.9V$

This waveform could be constructed using the VREF output to produce the constants (3/2 VREF, VREF, ¹/₂ VREF) that are combined with the appropriate VPHS output using op amp summer and subtracter circuits as shown below

Voltage A is selected when the phase angle, Θ , is > 0° and ≤45°. Voltage B is selected when Θ is > 45° but ≤ 135°, Voltage C is selected for 135° < Θ ≤ 225°, Voltage D for

а

a Full 360° Phase Detection with AD8302 180° Phase Detectors

 $225^{\circ} < \Theta \le 315^{\circ}$ and Voltage E for $315^{\circ} < \Theta \le 360^{\circ}$. The selection circuit, which could be a SP5T switch, 1:8 multiplexer, etc., would be controlled by comparators which would determine the proper output voltage selection by comparing VPHS_A and/or VPHS_B to 0.75 * VREF, 0.25 * VREF and each other. This discrete-switching approach might be inferior to a soft-handoff approach that would gradually select transfer the input of the selection circuit.

The summing and subtracting circuits could be constructed from op amp circuits.