
Option Explicit

Dim Dir_OS as Single, Position as Single, True_Dir as Single, Target_Dir as Single
Dim Icom3 as Byte, OCom3(1 to 40) as Byte
Dim CW as Boolean, MotorMoveFlag as Boolean, PotChangedFlag as Byte, AlreadyOnFlag as Boolean, OverCurrent_Count as Byte
Dim SW1 as Byte, Old_Meter as Byte
Dim ROT as Integer, TAR as Integer
Dim Target_Val as Single, Target_Diff as Single, Old_Target as Single, Target_Delta as Single, Target_Done as Byte, Read_Pos as Byte

Dim DirI as Integer
Const CWPin as Byte = 8
Const CCWPin as Byte = 9

Public Sub Main()
 CW = True

 'Set to move rotator clockwise
 MotorMoveFlag= False

 'Set rotator not to move
 AlReadyOnFlag = False

 'Flag motor not moving
 PotChangedFlag = 0

 'Flag pot not changed
 OverCurrent_Count = 0

 'Initialize over current counter
 Old_Meter = 0

 'Initialize old meter tic position to unused part of display
 Call PutPin(5, bxInputPullup) 'Pin 5 is a pulled up

input
 Call PutPin(6, bxInputPullup) 'Pin 6 is a pulled up

input
 Call PutPin(7, bxInputPullup) 'Pin 7 is a pulled up

input
 Call PutPin(CWPin, bxOutputLow) 'Motor off

clockwise
 Call PutPin(CCWPin, bxOutputLow) 'Motor off

counterclockwise

'Set up COM3 port to drive LCD

 Call OpenQueue(OCom3, 40) 'Open an

output queue for com3
 Call DefineCom3(0, 6, bx1000_1000) 'Com 3 as output on

pin 6 with 8 data bits, no parity
 Call OpenCom(3, 9600, ICom3, OCom3) 'Open com3
 Call Delay(0.5)
 Call PutQueueStr(OCom3, Chr(12)) 'Clear screen
 Call PutQueueStr(OCom3, Chr(2)) 'Set

brightness
 Call PutQueueStr(Ocom3, Chr(255))
 Call PutQueueStr(OCom3, Chr(3)) 'Set

contrast
 Call PutQueueStr(Ocom3, Chr(0))
 Call PutQueueStr(OCom3, Chr(23)) 'Set buzzer frequency
 Call PutQueueStr(Ocom3, Chr(150))
 Call PutQueueStr(Ocom3, Chr(16)) 'Position cursur to

element 3
 Call PutQueueStr(Ocom3, Chr(3))
 Call PutQueueStr(Ocom3, "TARGET ") 'Print target label
 Call PutQueueStr(Ocom3, " ACTUAL") 'Print rotator label

'Define Special Characters
 Dim N as Byte, M as Byte
'Special Character 0 is tic mark
 Call PutQueueStr(Ocom3, Chr(19))
 Call PutQueueStr(Ocom3, Chr(0))
 For N = 1 to 4

 Call PutQueueStr(Ocom3, Chr(0))
 Next
 For N = 1 to 3
 Call PutQueueStr(Ocom3, Chr(4))
 Next
 Call PutQueueStr(Ocom3, Chr(0))

'Special Character 1 first meter character
 Call PutQueueStr(Ocom3, Chr(19))
 Call PutQueueStr(Ocom3, Chr(1))
 Call PutQueueStr(Ocom3, Chr(0))
 For N = 1 to 6
 Call PutQueueStr(Ocom3, Chr(16))
 Next
 Call PutQueueStr(Ocom3, Chr(0))

'Special Character 2 second meter character
 Call PutQueueStr(Ocom3, Chr(19))
 Call PutQueueStr(Ocom3, Chr(2))
 Call PutQueueStr(Ocom3, Chr(0))
 For N = 1 to 6
 Call PutQueueStr(Ocom3, Chr(8))
 Next
 Call PutQueueStr(Ocom3, Chr(0))

'Special Character 3 third meter character
 Call PutQueueStr(Ocom3, Chr(19))
 Call PutQueueStr(Ocom3, Chr(3))
 Call PutQueueStr(Ocom3, Chr(0))
 For N = 1 to 6
 Call PutQueueStr(Ocom3, Chr(4))
 Next
 Call PutQueueStr(Ocom3, Chr(0))

'Special Character 4 fourth meter character
 Call PutQueueStr(Ocom3, Chr(19))
 Call PutQueueStr(Ocom3, Chr(4))
 Call PutQueueStr(Ocom3, Chr(0))
 For N = 1 to 6
 Call PutQueueStr(Ocom3, Chr(2))
 Next
 Call PutQueueStr(Ocom3, Chr(0))

'Special Character 5 fifth meter character
 Call PutQueueStr(Ocom3, Chr(19))
 Call PutQueueStr(Ocom3, Chr(5))
 Call PutQueueStr(Ocom3, Chr(0))
 For N = 1 to 6
 Call PutQueueStr(Ocom3, Chr(1))
 Next
 Call PutQueueStr(Ocom3, Chr(0))

'Read Center Direction Pins and determine offset
 SW1 = GetPin(5)
 If SW1 = 0 Then
 Dir_OS = 353.0

 'Center direction is North
 Call PutQueueStr(Ocom3, Chr(16)) 'Position to last line

of display
 Call PutQueueStr(Ocom3, Chr(40))
 Call PutQueueStr(Ocom3, "E S W N E S W") 'Display direction scale
 Else
 Dir_OS = 173.0

 'Center direction is South
 Call PutQueueStr(Ocom3, Chr(16)) 'Position to next to

last line of display

 Call PutQueueStr(Ocom3, Chr(40))
 Call PutQueueStr(Ocom3, "W N E S W N E") 'Display direction scale
 End If
'Place scale tic marks
 For N = 0 to 5
 M = 41 + (3 * N)
 Call PutQueueStr(Ocom3, Chr(16)) 'Position curser
 Call PutQueueStr(Ocom3, Chr(M))
 Call PutQueueStr(Ocom3, Chr(128))
 Call PutQueueStr(Ocom3, Chr(128))
 Next

'This is the main loop that sees if a rotation needs to be done. If the rotation sensor is moved, the
'LED's increment or decrement to the desired heading, and the decimal points light. The direction is determined by where the rotation

pot is turned.
'When the desired position is determined, the ROT button is pushed and the rotator tracks to the desired position and the decimal points

are turned off.
'The display now displays the actual position of the rotator in degrees. The starting position of the rotator and the new desired position

are used
'to compute whether the rotator turns clockwise or counter clockwise to get to the desired position fastest without encountering the

limits.
'The LED's display the actual rotator position until the position pot is turned. If the position pot is turned while the rotator is still turning

from
'the last command, the rotator stops. If the ROT button is held in for 5 seconds, the LED's display the pot position in the rotator which

goes
'from 0 to 705 degrees. If an over current condition is encountered, the rotator is stopped and the decimal points blink at a 1 second rate.
'The power must be recycled to clear this condition.

 Do
 Call GetADC(14,Old_Target)

 'Read Target value
 Call Delay(0.1)
 Call DisplayDirection()

 'Display Target and Rotator directions
 Call GetDirection(True_Dir, Dir_OS,CW)

 'Get the position of rotator and compute the true direction
 Call CheckRotationSensor(True_Dir, Target_Dir, MotorMoveFlag) 'Check if a change in direction is

desired
 Call MotorOn(True_Dir, Target_Dir, CW, MotorMoveFlag, AlreadyOnFlag) 'Move rotator to new position
 Call MotorCurrent(OverCurrent_Count)

 'Check for excess motor current
 Call MotorOff(True_Dir, Target_Dir, CW, AlReadyOnFlag) 'Stop

motor if at target position
 Loop
End Sub

'GetDirection reads the rotator position pot, converts it to degrees and then to true degrees based on the center
'position. It also sets the limit flags.

Sub GetDirection(True_Dir as Single, Dir_OS as Single, CW as Boolean)
 Dim CCW_SD as Single, CW_SD as Single, Position as Single
 CCW_SD = 83.0

 'Counter clockwise limit
 CW_SD = 622.0

 'Clockwise limit
 Call GetADC(13, Position) 'Read pot

votage as a single between 0.0 and 1.0
 Position = Position * 705.0 'Compute

absolute position between 0 and 705 degrees
 'Set flag to rotate CW if Rotator at Counter Clockwise limit
 If Position <= CCW_SD Then
 CW = True
 End If
 'Set flag to rotate CCW if rotator is at Clockwise limit
 If Position >= CW_SD Then
 CW = False

 End If
 'Compute actual direction
 True_Dir = Position - Dir_OS
 If True_Dir < 0.0 Then
 True_Dir = True_Dir + 360.0
 End If
 If True_Dir >= 359.5 Then
 True_Dir = True_Dir - 360.0
 End If
End Sub

'DisplayDirection displays the direction of the rotator and target in degrees on the LCD

Sub DisplayDirection()
 Dim N as Byte, M as Byte, Pos as Integer
 TAR = CInt(Target_Dir)
 ROT = Cint(True_Dir)
 Call PutQueueStr(Ocom3, Chr(16)) 'Position curser to

Target character
 Call PutQueueStr(OCom3, Chr(24))
 If PotChangedFlag = 0 Then 'If Target

reached, blank Target value
 Call PutQueueStr(Ocom3, "---")
 Else

 'Otherwise, display Target value
 If TAR < 100 Then
 Call PutQueueStr(OCom3, Chr(32))
 End If
 If TAR < 10 Then
 Call PutQueueStr(OCom3, Chr(32))
 End If
 Call PutQueueStr(OCom3, Cstr(TAR))
 End If
 Call PutQueueStr(Ocom3, Chr(16)) 'Position curser to

Rotator actual position
 Call PutQueueStr(OCom3, Chr(32))
 If ROT < 100 Then

 'Display rotator actual position
 Call PutQueueStr(OCom3, Chr(32))
 End If
 If ROT < 10 Then
 Call PutQueueStr(OCom3, Chr(32))
 End If
 Call PutQueueStr(OCom3, Cstr(ROT))
 Pos = CInt(Position)
 N = 0
 Do
 Pos = Pos - 30
 N = N + 1
 Loop Until Pos < 68
 N = N - 1
 M = N
 N = N + 60
 If N <> Old_Meter Then
 Call PutQueueStr(Ocom3, Chr(16)) 'Position

to old meter tic position
 Call PutQueueStr(Ocom3, Chr(Old_Meter))
 Call PutQueueStr(Ocom3, " ") 'Blank old

tic
 End If
 Call PutQueueStr(Ocom3, Chr(16)) 'Position

to new meter tic position
 Call PutQueueStr(Ocom3, Chr(N))
 Pos = 68 + (CInt(M) * 30)

 'Calculate fine tic position

 Select Case CInt(Position)
 Case Pos to Pos + 5
 M = 1
 Case Pos + 6 to Pos + 11
 M = 2
 Case Pos + 12 to Pos + 17
 M = 3
 Case Pos + 18 to Pos + 23
 M = 4
 Case Pos + 24 to Pos + 29
 M = 5
 End Select
 M = M + 128
 Call PutQueueStr(Ocom3, Chr(M))

 'Output proper tic to display
 Old_Meter = N

 'Save old tic position for blanking if different next time
End Sub

'CheckRotationSensor checks to see if a rotation is desired and does it. This routine looks at the value of
'the pot and decides whether to increment or decrement and how fast to do it.

Sub CheckRotationSensor(True_Dir as Single, Target_Dir as Single, MotorMoveFlag as Boolean)
 Dim Pos_Diff as Single
 Target_Delta = 0.01
 Call GetADC(14,Target_Val)

 'Read Target value
 Target_Diff = Target_Val - Old_Target
 Target_Diff = ABS(Target_Diff)
 If Target_Diff >= Target_Delta Then
 PotChangedFlag = 1

 'Flag that the Target pot has been changed
 If AlreadyOnFlag = True Then
 Call RampDown(CW)

 'Turn motor off
 End If
 MotorMoveFlag= False
 Do
 Call GetADC(14,Target_Val)

 'Read Target value
 Target_Dir = (Target_Val - 0.5) * 360.0 'Convert to degrees
 If Target_Dir < 0.0 Then

 'Adjust direction
 Target_Dir = Target_Dir + 359.0
 End If
 Call DisplayDirection() 'Display

Target Position
 Target_Done = GetPin(7)

 'Check done
 If Target_Done = 0 Then
 MotorMoveFlag = True
 End If
 Loop Until MotorMoveFlag = True
 Pos_Diff = Abs(Target_Dir - True_Dir) 'If Target Position

isn't 2 degrees from True Position, don't move motor
 If Pos_Diff <= 2.0 Then
 MotorMoveFlag = False
 PotChangedFlag = 0

 'Flag that the Target pot was not changed enough
 End If
 Call PutPin(16, bxOutputLow) 'Turn off

decimal points
 End If
End Sub

'MotorOn turns the rotator motor on after calculating the shortest way to go from where
'it is pointed to wher it needs to go. If the shortest route violates the end travel of the
'rotator, then the longest route is implemented. CW = True means go clockwise. CW = False
'means go counterclockwise.

Sub MotorOn(True_Dir as Single, Target_Dir as Single, CW as Boolean, MotorMoveFlag as Boolean, AlreadyOnFlag as Boolean)
 Dim Pos_Diff as Single, Travel as Single
 If AlreadyOnFlag = False Then
 If MotorMoveFlag= True Then

 'Start the rotator motor if warrented
 If True_Dir >= 180.0 Then
 If Target_Dir < 180.0 Then
 Pos_Diff = True_Dir - Target_Dir
 If Pos_Diff < 180.0 Then
 CW = False
 Travel = True_Dir - Target_Dir
 Else
 CW = True
 Travel = 360.0 - True_Dir + Target_Dir
 End If
 Else
 If True_Dir > Target_Dir Then
 CW = False
 Travel = True_Dir - Target_Dir
 Else
 CW = True
 Travel = Target_Dir - True_Dir
 End If
 End If
 Else
 If Target_Dir < 180.0 Then
 If True_Dir > Target_Dir Then
 CW = False
 Travel = True_Dir - Target_Dir
 Else
 CW = True
 Travel = Target_Dir - True_Dir
 End If
 Else
 Pos_Diff = Target_Dir - True_Dir
 If Pos_Diff < 180.0 Then
 CW = True
 Travel = Target_Dir - True_Dir
 Else
 CW = False
 Travel = 360.0 - Target_Dir + True_Dir
 End If
 End If
 End If
 Call GetADC(13, Position)

 'Read pot votage as a single between 0.0 and 1.0
 Position = Position * 705.0

 'Compute absolute position between 0 and 705 degrees
 If Position >= 622.0 Then

 'Flag to go counterclockwise if at clockwise limit
 CW = False
 End If
 If Position <= 83.0 Then

 'Flag to go clockwise if if at counterclockwise limit
 CW = True
 End If
 If CW = True Then
 If Position + Travel >= 622.0 Then
 CW= False
 End If
 Else

 If Position - Travel <= 83.0 Then
 CW = True
 End if
 End if
 Call RampUp(CW)

 'Ramp up motor and leave running
 AlReadyOnFlag = True

 'Flag motor as running
 End If
 End If
 Call GetADC(13, Position)

 'Read pot votage as a single between 0.0 and 1.0
 Position = Position * 705.0

 'Compute absolute position between 0 and 705 degrees
 If CW = True Then
 If Position >= 622.0 Then
 Call RampDown(CW)
 End If
 Else
 If Position <= 83.0 Then
 Call RampDown(CW)
 End If
 End If
End Sub

'RampUp ramps the motor up to full speed over 100 msec and leaves it on

Sub RampUp(CW as Boolean)
 Dim N as Byte, M as Byte, Q as Single, P as Single
 If CW = True Then
 Call PutPin(CCWPin, bxOutputLow) 'Turn off

CounterClockwise Direction
'Slowly ramp up motor speed ClockWise over 100 msec
 For N = 1 to 9 Step 1
 M = 10 - N
 P = CSng(N) * 10.0e-3
 Q = CSng(M) * 10.0e-3
 Call PutPin(CWPin, bxOutputHigh) 'Turn

motor on
 Call Delay(P)
 Call PutPin(CWPin, bxOutputLow)

 'Turn motor off
 Call Delay(Q)
 Call GetDirection(True_Dir, Dir_OS,CW) 'Get the position of

rotator and compute the true direction
 Call DisplayDirection() 'Display

true direction of rotator
 Next
 Call PutPin(CWPin, bxOutputHigh) 'Motor full

speed Clockwise
 Else
 Call PutPin(CWPin, bxOutputLow)

 'Turn off Clockwise Direction
'Slowly ramp up motor speed CounterClockWise over 100 msec
 For N = 1 to 9 Step 1
 M = 10 - N
 P = CSng(N) * 10.0e-3
 Q = CSng(M) * 10.0e-3
 Call PutPin(CCWPin, bxOutputHigh) 'Turn

motor on
 Call Delay(P)
 Call PutPin(CCWPin, bxOutputLow) 'Turn

motor off
 Call Delay(Q)
 Call GetDirection(True_Dir, Dir_OS,CW) 'Get the position of

rotator and compute the true direction

 Call DisplayDirection() 'Display
true direction of rotator

 Next
 Call PutPin(CCWPin, bxOutputHigh) 'Motor full

speed Counterclockwise
 End If
End Sub

'RampDown ramps the motor down to zero speed over 100 msec and leaves it off

Sub RampDown(CW as Boolean)
 Dim N as Byte, M as Byte, Q as Single, P as Single
 If CW = True Then
 Call PutPin(CCWPin, bxOutputLow) 'Turn off

CounterClockwise Direction
'Slowly ramp down motor speed ClockWise over 100 msec
 For N = 9 to 1 Step -1
 M = 10 - N
 P = CSng(N) * 10.0e-3
 Q = CSng(M) * 10.0e-3
 Call PutPin(CWPin, bxOutputHigh) 'Turn

motor on
 Call Delay(P)
 Call PutPin(CWPin, bxOutputLow)

 'Turn motor off
 Call Delay(Q)
 Call GetDirection(True_Dir, Dir_OS,CW) 'Get the position of

rotator and compute the true direction
 Call DisplayDirection() 'Display

true direction of rotator
 Next
 Else
 Call PutPin(CWPin, bxOutputLow)

 'Turn off Clockwise Direction
'Slowly ramp down motor speed CounterClockWise over 100 msec
 For N = 9 to 1 Step -1
 M = 10 - N
 P = CSng(N) * 10.0e-3
 Q = CSng(M) * 10.0e-3
 Call PutPin(CCWPin, bxOutputHigh) 'Turn

motor on
 Call Delay(P)
 Call PutPin(CCWPin, bxOutputLow) 'Turn

motor off
 Call Delay(Q)
 Call GetDirection(True_Dir, Dir_OS,CW) 'Get the position of

rotator and compute the true direction
 Call DisplayDirection() 'Display

true direction of rotator
 Next
 End If
 Call PutPin(CWPin, bxOutputLow) 'Motor stopped
 Call PutPin(CCWPin, bxOutputLow) 'Motor stopped
 AlreadyOnFlag = False

 'Flag motor stopped
End Sub

'MotorOff stops the motor if the rotator has reached the target position or a new target is selected

Sub MotorOff(True_Dir as Single, Target_Dir as Single, CW as Boolean, AlReadyOnFlag as Boolean)
 Dim Pos_Diff as Single
 If AlReadyOnFlag = True Then
 Pos_Diff = Abs(Target_Dir - True_Dir)
 If Pos_Diff <= 5.0 Then

 'Close enough, stop motor

 Call RampDown(CW)
 'Stop slowly

 AlreadyOnFlag = False
 'Flag motor not already on

 MotorMoveFlag = False
 'Flag do not move motor

 PotChangedFlag = 0
 'Flag that Target is reached, so blank Target reading

 End If
 End If
End Sub

'MotorCurrent monitors the motor current. If the current exceeds 5 amps for 500 msec, this routine shuts off
'the motor, flashes the decimal points, and needs a power on/off to reset.

Sub MotorCurrent(OverCurrent_Count as Byte)
 Dim Motor_Current as Single
 Call GetADC(15, Motor_Current)
 If Motor_Current >= 0.1 Then
 OverCurrent_Count = OverCurrent_Count +1
 Else
 OverCurrent_Count = 0
 End If
 If OverCurrent_Count > 3 Then 'turn off if

over current for ~3 seconds
 Call PutPin(CWPin, bxOutputLow)

 'Motor off clockwise
 Call PutPin(CCWPin, bxOutputLow) 'Motor off

counterclockwise
 Do
 Call PutQueueStr(Ocom3, Chr(16)) 'Position

cursor
 Call PutQueueStr(Ocom3, Chr(38))
 Call PutQueueStr(Ocom3, "OC") 'Display

Over Current sign
 Call PutQueueStr(Ocom3, Chr(7)) 'Beep
 Call Delay(1.0)

 'Delay 1 second
 Call PutQueueStr(Ocom3, Chr(16)) 'Position

cursor
 Call PutQueueStr(Ocom3, Chr(38))
 Call PutQueueStr(Ocom3, " ") 'Blank

Over Current sign
 Call PutQueueStr(Ocom3, Chr(7)) 'Beep
 Call Delay(1.0)

 'Delay 1 second
 Loop
 End If
End Sub

